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Steven M. Burns and Alain J. Martin
Computer Science Department

California Institute of Technology
Pasadena, CA 91125 USA
{steveb,alain}@vlsi.cs.caltech.edu

Abstract

We present a method for analyzing the time performance of asynchronous
circuits, in particular, those derived by program transformation from concur-
rent programs using the synthesis approach developed by the second author.
The analysis method produces a performance metric (related to the time
needed to perform an operation) in terms of the primitive gate delays of the
circuit. Such a metric provides a quantitative means by which to compare
competing designs. Because the gate delays are functions of transistor sizes,
the performance metric can be optimized with respect to these sizes. For
a large class of asynchronous circuits—including those produced by using
our synthesis method—these techniques produce the global optimum of the
performance metric. A CAD tool has been implemented to perform this
optimization.

1 Introduction

Performance analysis of a synchronous computer system is simplified by an
external clock that partitions the events in the system into discrete segments.
In asynchronous systems, no such quantization exists. Instead, the operation
of the system proceeds at a rate determined by the speed of its individual
components, and the sequencing of the operation of the components. Unlike
the synchronous case, the time needed to perform an asynchronous compu-
tation cannot be determined by merely counting the number of clock cycles
required and multiplying by the clock period. Instead, to determine the
time required to perform the computation as a whole, the times of those
individual components of the computation that must occur sequentially are
summed.

The techniques required to analyze asynchronous systems resemble those
used to determine the clock period of a synchronous system, that is, summing
the delays along the longest path through the combinational logic connecting
adjacent latches. In the clocked case, the critical path has a clear beginning
and a clear end because all paths are broken by latches. No clear separation
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is available in asynchronous systems. Analysis procedures must deal directly
with cyclic critical paths; thus, existing critical-path analysis tools such as
CRYSTAL [11] cannot be easily applied to this problem.

This paper discusses a framework for determining the time needed to
perform computations using asynchronous systems, and applies especially
to repetitive computations. Early work in the scheduling of concurrent com-
puting elements [14] is closely related to our approach. Previous work in
the area of timed Petri nets [13, 6] applies to this problem as well. The
results we describe here are based on event-rule systems, a different formal-
ism that is more closely connected to the methods we use to synthesize the
asynchronous systems. Furthermore, we use our formalism to model the
performance of asynchronous circuits, and provide a method for optimizing
such circuits for performance.

Martin ([9] and elsewhere) has developed a synthesis method whereby
asynchronous circuits are produced from concurrent program descriptions.
By applying a systematic series of semantics-preserving transformations, a
high-level description (CSP program) is refined, using the intermediate forms
of handshaking expansions and production rules, until a provably correct
asynchronous CMOS circuit is constructed.

At each stage of the synthesis procedure, a variety of transformations
can potentially be applied. In the automated compiler of [2], these choices
are made so that the same subcircuit template can be used to implement
each instance of the same CSP language construct. Instances of these small
templates are composed together to form a correct circuit that implements
the original CSP program. However, in order to produce high-performance
circuits, these choices must be directed by performance concerns. We ob-
served this potential benefit of performance-directed transformations during
the design of the Caltech Asynchronous Microprocessor [8]. The decisions
of what transformation to apply were based on performance goals and this
accounts for its high performance.

Event-rule (ER) systems can be used at each stage of the synthesis proce-
dure to analyze the potential performance of the current refinement. Given a
trace of the execution of a complete, closed program (environment included),
an ER system can be generated from any of the intermediate forms: CSP
programs, handshaking expansions, production rules, or CMOS circuits. The
trace of execution is used to unroll each process that contains guarded com-
mands into a straight-line process. In the cases where the trace of execution
repeats, a repetitive ER system can be generated. The cycle period (the time
between repeated events) can be determined using the techniques explained
in Section 2.

These techniques provide an expression for the cycle period in terms of
maximums and sums of individual component delays. At the circuit level,
the component delays are functions of transistor widths and, as such, the
cycle period can be optimized with respect to these widths. Non-linear
optimization methods (such as those used in TILOS [3] and COP [7]) can
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be used to perform the optimization of this expression for the cycle period.
Our approach differs from those used for synchronous systems because we
optimize all critical paths simultaneously.

2 Event-Rule Systems
An event-rule (ER) system, is a pair (E, R), where:
E is a set of events, and

R is a set of rules defining timed constraints between the events. Each
r € R is written e ¥ f, where

e € F is the source of r,

f € E is the target of r, and
a € [0,+00) is the delay of r.

Neither E nor R need be finite. When R is infinite, we require that no
event depend on an infinite number of other events. That is, the set of
predecessors (immediate or otherwise) of an event must be finite. Sometimes
it is convenient to view (E, R) as a directed graph (multiple arcs and self-
loops allowed); this graph will be referred to as the constraint graph G. For
a given (E, R), there is a (possibly empty) set of functions, T, that satisfies:

T is a subset of the functions from E to [0, +00) ;

t € T if and only if

t(fy>tle)+aforeveryer fER. (1)

We call a function ¢ in the set T" a timing function of (E, R). Each t represents
a possible or consistent timing specification for the events of the system.
If the set T is empty, the constraints (1) cannot be satisfied by any such
function . In this case, the (E, R) is called infeasible; otherwise, it is called
feastble.

Example 2.1 Consider the (E, R) with
E = {a,b,c} R = {a3b,b%a,b5 ¢}
This ER system is feasible if and only if aq = 0 and a3 = 0. |

The smallest timing function denotes the earliest time at which the events
of E can execute, and thus corresponds to the observed execution times of
real circuits. Any feasible ER system with a constraint graph containing
cycles can be transformed into an equivalent acyclic system [1].
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Lemma 2.1 If the constraint graph G of an event-rule system (E,R) is
acyclic, then there exists a unique function £ € T such that for every ¢ € T,

i(e) < t(e) for every e € E. (2)
We call £ the timing simulation of (E, R).

Proof: We propose the following recursive definition for :

N ] if sources(f) =10
uf) = { max{t(e) + a | e+> f € R} otherwise. ®)

We can show, by contradiction, that £ is the smallest timing function. (See
[1] for a complete proof.) §

Example 2.2 The ER system defined by the constraint graph:

€
Qe

o [+ (24
a ab, b be c ed d

has the timing simulation:

f(a) =0 A
{(e) = 0 f(c) = ma.x(aab, c“eb) + Qe
t(b) = ma‘x(aab’ a8b) t(d) = max(ozab, aeb) + ape + aeq

O

2.1 Repetitive Systems

ER systems of unbounded size corresponding to asynchronous circuits can
be generated from bounded structures. Consider the event set E generated
from a finite set E’ by

E = E' xN.

The elements of E’ are called transitions. An event (u,%) € E is the indexed
occurrence of the transition u € E’. The non-negative integer i is called the
occurrence index.

The rule set R is also generated from a finite set R’. The elements of R’
are quadruples

r = (u,v,a,e) € R', where R C E' x E' x [0,+0) x Z,
which we will write as
r = (u,i—e) > (v,3).

The integer ¢ is called the occurrence-indez offset of r. The dummy variable
1 is replaced by a non-negative integer no less than ¢ when r is instantiated
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(an infinite number of times) to form the generated rule set R. We require
i > max(0,¢) so that the occurrence indices of both the source and the
target events of the instantiated rule are both non-negative and thus in E.
We call (E, R) the (general) ER system generated from the repetitive ER
system (E', R').

Example 2.3 Consider the repetitive ER system constructed from a circuit con-
taining a single Muller C-element:

E = {xT7yT’zTaxlaylv'zl}
R o= {(ali-1) " (z1,i),
z z (yl,i-1) o (z1,1),
. L .
Gy o
\ aaa .
y Gty E (1
(z1.8) O (al,i),
R Qatyl .
(z1,4) = (yl,i) }

Events are occurrences of transitions of circuit variables. The event {z 1,i) rep-
resents the it" occurrence of a transition from z = false to z = true. Similarly,
(z |,i) represents the i** occurrence of a transition from z = true to z = false.
The repeated rules correspond to dependencies introduced by the inverters and the
C-element that make up the circuit. Initially, z and y are false and z is true. We
can represent the infinite sets E and R graphically:

(z1,0) (z1,0)
@ z) ot Aot 2t O fw) A} z) @ z) 2t
(21,0) (=1,0) (z1,1)
Uzl yr @yt 2t Aatyl Qylz) Azl yt
N
(¥1,0) (y1,0)

Notice that event (z|,0) has no predecessors. In the timing simulation, t((z 1,0))
is set to 0. [For ease of notation, £({z 1,0)) will sometimes be written as #(z |,0).]
The entire tlmmg simulation £, which can be constructed by inspection from the
constraint graph, is:

i(21,8)=pi #(21,1) =max(asjat + Carat, dayt + ayrat) +pi
Hz1,)=azar +pi #(wl,i)=max(ausr + oapat, Cayt + Oytat) + ey +pi
Hyl i) =azqy +pi (yl,i)=max(uat + aatat, @aat + at) + 0ty +pi

where p = max(Qz|at + Qatets eyt + 0ya1) + MaX(sta) + Qofaf, Watyl + Aya))- [

2.2 Linear Timing Functions

In the previous example, we saw that the timing simulation of a repetitive
ER system took on a simple form that is linear in the occurrence index 1.
This is not the case for all repetitive ER systems. However, as is shown later
in Theorems 2.3 and 2.4, a linear timing function exists whenever the timing
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simulation exists, and the “best” such function will be a good approximation
of the timing simulation.

We call € T a linear timing function of (E', R'), if
t(v,i) =z, + pyi forevery v € E' and i € N. 4)

Each z, and p, are independent of i. For each v € E’, z,, and p, are called,
respectively, the offset and the cycle period of the transition v.

Because of the linear form of ¢, the timing function constraints, (1),
reduce to linear inequalities in the offsets and the cycle periods of the tran-
sitions. All dependence on the occurrence index i can be eliminated. For
each rule r = (u,i —€) ¥ (v,i) € R', we have the infinite set of constraints:

t(v,1) 2> t(u,i — €) + a, for each i > 4, = max(0,¢).
Replacing % by its definition (4), we get
Ty+pot 2 Tu+puli—e)+a.
Rearranging terms yields
Ty 2 Ty—put+a+ (pu—po)i. (5)

Equation (5) can never be satisfied for all ¢ if p, > p,. Thus, the infinite set
of constraints generated by  can be replaced by the two inequalities,

Ty

Dy

mu_pu5+a+(pu_pv)iﬂa and (6)
Do (M

vV v

We define the collapsed-constraint graph G’ of (E', R') as the directed
graph with nodes from E’ and arcs from R'. From (7) we see that for
a feasible solution to exist, a partial ordering between the p,’s must be
satisfied. If two nodes, 4 and v, are in the same cycle of G', then p, must
equal p,. Thus, all transitions in the same strongly-connected component
of G’ have the same cycle period. In the following, we consider only those
repetitive ER systems in which G’ is strongly connected, and we use p to
denote the cycle period of every element in E’. Thus (6) simplifies to

Ty, 2 Tyta—ep. (8)
Each arc of G’ is labeled with a — ¢ p to signify constraint (8).

2.3 Minimum-Period Linear Timing Functions

Among the possible linear timing functions, there are those that minimize
the cycle period p. The techniques of linear programming [4] can be used to
find such a minimum-period linear timing function.
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The constraints of a linear timing function, (8), are simple linear inequal-
ities in the z,’s and p. By ordering the sets E’' and R’', we can construct a
linear program in matrix form:

z=min0"z +17p, A'z+ep > a, z,p > 0. (9)

The matrix A’ is the arc-node incidence matrix of the collapsed-constraint
graph G'. If row j of A’ represents the constraint r; € R', and column & of
A’ represents the transition u; € E’', then

—1 if u; is the source transition of r;
ay = 1 if uy is the target transition of r;
0 otherwise .

The jth elements of the (column) vectors ¢ and « are the occurrence-index
offset and the delay of constraint r;, respectively.

Example 2.4 Consider the system (E’, R') corresponding to a lazy-active/passive
buffer (Figure 1) connected to the trivial environment:

E' = {lof,lit,rol,rif,lol,li|,rol,ri|}

R = {{iLi-1) ¥ (lof,i), (rol,i—1) ¥ (lof,i),
(1i1,4) Y (lol,d),  (rit,d) ' (rot,d),
(lo},1) W (rot,i),  (ril,i) W (rol,i),
(lo1,i) o), (ol o),
(rolyi—1) ¥ (rit,i),  (rot,i) o (ril,i) }
For this example, A’z +¢cp > a is:
1 0 0 0 0 -1 0 0 1 Qief
( 1 0 0 0 0 0 -1 0_\ EZR {1\ [a,,,T\
0 -1 0 0 1 0 0 0 Tiq 0 Qi
0 0 1 -1 0 0 0 O Ty 0 Qrof
0 0 1 0 -1 0 0 0 Tpif 0 rof
00 0 0 0 0 1 =1 || azq |T]o0]|?P2] ang
-1 1. 0 0 0 0 0 o0 i) 0 gy
0 0 0 0 -1 1 0 0 Tro) 0 oy
0 0 0 1 0 0 -1 0]\ azy)/ 1 arg
\ 0 0 -1 0 0 0 0 1) \ 0 ) \ ary )

O

The duality theorem of linear programming relates the primal program
(9) to the dual program:

w=maxy e, yTA' <07, yTe <1, y>0. (10)

If both the primal and the dual programs have optimal solutions, then the
optimal value 2 of the primal equals the optimal value w of the dual. Since
A’ is an arc-node incidence matrix, and thus 4’1 = 0, any y feasible for (10)
also satisfies yT A’ = 0T. Thus, to determine the optimal value w, we need
only solve the simplified dual program:

w=maxy o, yTA' =07, yTe <1, y > 0. (11)



2.4 Cycle Vectors of a Graph

A cycle c of length £ in a directed graph, G = (N, A), is an ordered subset
(@0, @1,...,as_1) of the arcs A such that target(ar—,) = source(a;) for all
0 < k < £ and target(a,—,) = source(ay). The cycle ¢ can be represented by
a cycle vector u, a {0, 1}-vector of length |A|, where u; = 1 if and only if the
j** arc of A is in the set c. For each cycle vector u, uTA’ = 07, where A’ is
the arc-node incidence matrix of the graph G. A cycle is simple if each node
in the cycle has one incoming and one outgoing cycle arc. The following

lemma relates the simple-cycle vectors to an arbitrary vector y satisfying
T A’ — T
yr A’ =01,

Lemma 2.2 Let U;, 0 < ¢ < ¢ denote the simple-cycle vectors of a graph
with arc-node incidence matrix A’. Then, if y > 0 is such that yT A’ = 07,
there exist scalars §; > 0, 0 < i < g such that

y=00U0+01U1+...+0q_1U_1 . (12)

Proof: See [1] for complete proof. The proof uses induction on the number
of simple cycles in the graph of A’. §

This lemma provides a straightforward means of determining the mini-
mum cycle period p. By enumerating every simple cycle in the collapsed-
constraint graph, and computing the sum of the delays and the sum of the
occurrence-index offsets around each cycle, we can find p.

Theorem 2.3 The minimum cycle period, or equivalently, the optimal value
of the dual program (11), is

max Ul
Ufe

for all simple-cycle vectors U, k} . (13)

Proof: Let U be the simple-cycle matrix constructed by concatenating the
(column) simple-cycle vectors Uy, Uy, ..., U,_y. By construction, UTA’ = 0.
By Lemma 2.2, any y > 0 with 47 A’ = 07 can be represented as the product
U©, where the vector © has non-negative elements. The dual program (11)
reduces to:

w=maxO0T(UTa) ,07(U%)<1,0>0.
The dual of the reduced dual is easily solved:
z=min) ,(UTe)A > (UTa) ,A>0. (14)

The smallest scalar A that satisfies the vector inequality in (14) yields the
desired minimum cycle period. |

Example 2.5 The minimum cycle period of the previous example can be de-
termined by a cycle-period analysis. Two views of the collapsed-constraint graph
are:



Qo — P ap

e ———
lof —= lif —>lo| —>li] lot —> li1 —>lo| —> li|
Qg Qlo| 22 5]) ag (1]
Qi — P ‘ gl a ay
Qrg| . Qri) Qpgt . as ag ag
rol T ril = ol =T o il rol T ril = rof == rif
Qrit — P as

The view on the left uses the standard labeling; on the right, the labels denote
the numbered arcs. The three cycles through the graph can be represented by the

simple-cycle matrix:
The vector inequality (UT¢) A > (UT ) becomes:

1 Qi + Qo) + Arot + Qg + it + @iy ay
11x 2> Qg + Qo) + g + oy = ay

1 Qg + Qpol + Qpip + Qpg| (73

-0
O

11011100
vT = 01000110
000101001

Thus, the minimum cycle period is max(ag, a1, az). O

2.5 Efficient Computation of the Minimum Cycle Period

Enumeration of all simple cycles of a graph does not lead to an efficient
procedure to compute the cycle period because an arbitrary graph may have
exponentially more simple cycles than nodes or arcs.

Lawler in [5] provides an O(|N]|.A| log B) solution to the minimal cost-
to-time ratio cycle problem, which is equivalent to (13). Given a candi-
date cycle period that is too short and one that is too long, the algorithm
uses binary search and a procedure to test—for a particular candidate cycle
period—whether there is a negative cycle in the graph in order to determine
the minimum cycle period in log B steps. (B is related to desired precision
of the result.)

In [1], we provide an O(|N| |A]) algorithm to determine the minimum cy-
cle period when the sum of the £ values around each simple cycle is bounded.
This algorithm is based on a direct solution to the linear program (11) and
its corresponding dual and uses a customization of the general primal-dual
algorithm [12].

2.6 Case Study: Comparison of Two FIFOs

We now apply the performance analysis techniques of Section 2 to compare
the performance of two implementations of a first-in/first-out (FIFO) queue.
While it is possible to extend repetitive ER systems to allow the analysis of



an unbounded linear array of identical processes [1], we instead perform the
analysis directly on small arrays. We leave it as an exercise to the reader to
show that, in these two cases, instantiating additional processes in the array
does not increase the cycle period.

Three stages of a four-phase lazy-active/passive (lap) FIFO (Example 2.4)
with the datapath between the stages are shown in Figure 1. For a cir-
cuit level implementation of a lap stage, see [1] or [10]. The three criti-
cal cycles through the transitions of the middle process are represented by
bold arcs in the collapsed-constraint graphs (Figure 2). Assuming all de-
lays in the circuit are small compared to the datapath delay, we get that
p = ap + max(apy, ap)).

Two stages of Ivan Sutherland’s two-phase FIFO ([16], Figure 16) can be
described by the circuit and collapsed-constraint graph shown in Figure 3.
Since this circuit is symmetric in up and down transitions, we write, for
example, I for both liT and l2 |. The bold arcs in the graph represent the
critical cycle. Assuming all delays in the circuit are small compared to the
datapath delay, we get that p = 2ap.

A more complete analysis is provided in [1] which compares several other
designs for FIFOs. This example shows that the best existing two-phase and
four-phase implementations of a FIFO have comparable cycle periods. This
result validates our long-standing beliefs that four-phase implementations
are as fast as two-phase implementations, and that because of their simplicity
and generality, they offer a better discipline in which to design asynchronous
circuits.

2.7 Approximating the Timing Simulation

We now show that a minimum-period linear timing function provides an
accurate approximation to the timing simulation.

Theorem 2.4 Let { and { be a minimum-period linear timing function
and the timing simulation, respectively, of the connected repetitive system
(E', R'). There exists a finite B such that for all w € E' and all i > 0

Su;i =1t(u,i) —i(u,i) < B .
Proof: By definition for each u and

(u,i) = z,+pi
t(u,3) = zu+pi- Sui -
Each s,; is non-negative because { is the smallest timing function. For
the constraints generated from r = (u,i — &) = (v,i) € R’, we define the
non-negative slack variables, 2,; and Z,., thus transforming inequalities into
equalities:
Z,—pet+a+z = =z, (15)
Ty — PE — Syji-—e +ta+ ér,i = Ty — Sy,i (16)

»
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Ri

lap = [loT; [li]; lo|; [ri]; ro1; [ri]; ro s [-1]]

lap

— Ro —-@—.
1

lo m
lap
ro

11

Lo
lap

Figure 1: Three stages of a four-phase lap FIFO. The cigar-
shaped objects represent the datapaths. The dashed lines
denote the flow of data in the FIFO.

Ro? Ro| Rot Ro|
apy / ap|
Rit Ri] Ri1 Ri]
P —+ —
loT lo] —rofl ro| lot lo] =—»rol ro|
apiy b apy
apy T apt 1
li] i1 ril ri| li} i1 ril ri]
Lot Lol Lot Lo)
- H e
Li) Lit Li] Lit

Figure 2: Critical cycles through the graph of a three-
stage lap FIFO. The two graphs are identical; the sets of
connected, bold arcs represent the critical cycles. An arc
with a tick mark has ¢ = 1. All other arcs have ¢ = 0.

ro

ri Ro Ri
lo Li Lo
A

Co =}

Figure 3: Circuit and graph of Sutherland’s two-phase
FIFO. The operators marked C are Muller C-elements.
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By subtracting these equations and simplifying, we get
Z. - ﬁr,i = 8y,i = Suji—c - (17)

From Theorem 2.3, p ¥, c.€r = ¥, @~ for at least one cycle c. Adding the
constraints on £, (15), for each r € ¢, we see that

Zmu, —pZE,. +Za,. +EE, = Emur .
r€c réc rec réc r€c

Since along any cycle ¥, ¢, 2y, = X,.c. Zv,, We have for all r € ¢,

Z.=0 .

By (17), 84,i—c > $,,; for all ¢ > max(0,€) and all u,v on cycle c. By summing
along the cycle ¢, we see that for each u € ¢ and 3’ > 0

Su,it 2 8y, Where i =1¢'+ Z Er .

r€c

Therefore, we can bound s, ;, for every u € ¢, by

chAi’<Ze,}

r€c

B’ = max {su,,-,

For any transition v not on cycle ¢, we find a path P, to transition v from
a transition u on c. Because G’ is strongly connected, such a path must exist
and be independent of 7. Then, by summing (17) along that path, we get
for all 4,7 > 0

Sy, + E z, 2 Su,i
repP,

where ¢ = i’ + 3 p, €r- But EreP, Z,. is independent of ¢; thus, s,; is
bounded by a quantity that does not increase with successive occurrences.
Thus, every s, ; with v € ¢ is bounded by B where

B > max{s,,,.- vE€cAi< Ze,.} , and
Y‘EPu
B > B’+max{22,.v¢c} .1

rep,

3 Performance Optimization

Using the above analysis method, a performance metric (the minimum cycle
period p) can be expressed in terms of the primitive delays of an ER Sys-
tem. These delays can be estimated from the sizes of the transistors that
make up the operators of the circuit and from the way these operators are
interconnected, by using a simple resistance-capacitance (RC) timing model.
Composing the performance metric in terms of component delays with the
delay approximation of the operators in terms of transistor sizes, we get an
expression for the performance of the system in terms of transistor sizes.
This expression is minimized, producing optimal sizes for the transistors.

12



11|

| |
4;‘;11 wy L
Cwiring g z E Ws

Figure 4: Linear approximation of a CMOS pulldown.

o R
—T’MW— =
W% Cz%

3.1 Tau Model

A simple RC switch model is used to relate each individual delay o to the
various widths (w’s) of the circuit’s transistors. Each transistor is modeled
as a switch with a resistance inversely proportional to its width. The gate of
each transistor has a capacitance to ground proportional to its width. Source
and drain capacitances are also proportional to transistor widths. Thus, the
delays between aT and z |, and b1 and z |, of the circuit shown in Figure 4
are modeled as:

gz = R1Ci+ (Ry + R;)C,,  ay, = (R + Ry)Cy,
Ry= pfwy, Ry = pfw,,
C= Kint('wl + 'w2), C; = Kext (w2 + 'wa) + Cwiring + Kg(w4 + w5) ’

where 4 is a constant that describes the differing per-unit-width strengths
of the n- and p-channel transistors, K, is the per-unit-width capacitance
contributed by internal (to the series chain) drain and source terminals, K,
is the per-unit-width capacitance contributed by external (the output node)
drain terminals, K, is the per-unit-width gate capacitance, and Clyiring is the
capacitance contributed by wiring. All capacitances are expressed in terms
of transistor width; thus K; = 1. Each delay o is expressed in units of 7,
the time needed for a unit-width n-channel transistor to switch a unit-width
load. (Thus, g, =1, p, > 1.) The values of Kjy, Koy and Clyiring are not
constant, but depend on the final circuit layout that depends weakly on the
transistor widths. This dependence is normally small and is ignored in the
optimization problem.

Example 3.1 As an example, we will construct the optimization equations for
the C-element circuit of Example 2.3. For purposes of this example, the constants
of the tau model take on these values:

Kext =1, Kint = 0.5, Kg=1, pp=pn=1, Cwiring =0.

Since the mobilities of the pull-up and pull-down devices are assumed to be identical,
by symmetry the widths of the pull-up and pull-down devices are identical as are
the pull-up and pull-down delays. By removing the transition-direction reference
from the delay names (for example, o, is named @), and expanding the delays
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between transitions on z and y, and transitions on z (by introducing the new variable
u), the expression for the cycle period becomes

p = 2(auz + ma.x(azz + Qpyu, Xzy + O‘yu)) *

The circuit and corresponding o values are shown below:

dlw w
aLs ! . Oyz = wlo(%uo + 2wy + 2wy)
- L
-'4 wy y I"‘*EUO , wy Qzz = 57 (2’LU1 + 2w4)
_I I__I we Qzy = 5= (2w2 + 2w;3)
Wy Wo
' y Opy = (w%, + ;14') (2104 + 21110)
—-I w3 w2 Uyy = ﬁ (’ws + w4) + gy

0

3.2 Convex Objective Function

Every a derived using this simple model (and also other more accurate ones)
is a posynomial function (polynomial with positive coefficients and positive
variables) of the transistor widths w’s, and thus a convex function of the
log w’s [4]. Because both the sum and the maximum of two convex functions
are convex functions, the resulting expression for p is a convex function of
the log w’s; and, thus, each minimum of p is global. The addition of convex
constraints, for example, to limit power consumption or to bound transistor
sizes, does not alter the unique minimum property.

Example 3.2 The optimal value for the cycle period of Example 3.1 occurs when
the width values are a positive scalar multiple of

(wo, w1, w2, w3, wy) = (1.0,0.4782,1.1632,1.8002,0.9209).

(See [1] for an explanation of how to achieve a unique minimum point by constrain-
ing the power consumption and/or the largest and smallest transistor width.) O

We have implemented a CAD tool for solving the resulting non-linear,
non-differentiable, convex optimization problems based on the subgradient
techniques described by Shor [15]. Table 1 lists the results of this program
when applied to a variety of circuits. The column 7n,,,; denotes the number
of transistors in the circuit, and thus the number of free variables in the
optimization problem. The columns pypsizea and Psizeq show the cycle period
in units of 7 of the circuit before and after optimization. In the unsized case,
all n-channel transistors have equal sizes, and each p-channel transistor is
v/Pp times (optimal for an inverter ring) wider than the n-channel transis-
tors. The % imp column shows the percent improvement in p provided by
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L I Thirans I Dunsized | Psized l % imp " CPU l

Three inverters 6 42 42 0 14
C-element and two inverters 10 66 61 8 2.8
One stage lap 21 143 | 114 25 9.3
Three stage lap 59 189 | 143 32 49
Three stage lap* 59 189 | 143 32 25
Ten stage lap 192 189 | 151 25 279
Ten stage lap* 192 189 151 25 189
Simple microprocessor control* 285 646 | 430 50 369

Table 1: Performance of CAD tool.

the optimization. The CPU column denotes the number of user seconds
needed to compute the optimum value on a SUN/Sparcstation 1. A direct
implementation of the optimization algorithm requires O(nd s +Neyclesbmax)
arithmetic operations per iteration, where TNcycles 18 the number of cycles used
to form the cycle-period function and £, is the maximum number of arcs
per cycle. A more sophisticated implementation (results denoted by *) that
uses the primal-dual algorithm of Section 2.5 to determine the cycle period
at each iteration requires only O(n?,,.) arithmetic operations per iteration.

4 Summary

We have presented a method for determining the performance of circuits
described by event-rule systems. Furthermore, we have shown how to opti-
mally size transistors in such circuits. What we have not shown, due to lack
of space, is how to transform the specifications of asynchronous circuits that
we use for synthesis into ER systems. With the addition of these techniques,
we have a complete method combining synthesis and performance analysis.
The performance analysis can be done early and at each level of the synthe-
sis procedure and can be used to guide the synthesis of efficient circuits. A
complete description is given in [1].
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